Journal publications

2022
[35] R. Gulati, S. Rudraraju,"Spatio-temporal modeling of saltatory conduction in neurons using Poisson-Nernst-Planck treatment and estimation of conduction velocity", Brain Multiphysics, 100061, 2022. [journal] [arXiv]
[34] K. Bhagat, S. Rudraraju, "Modeling of dendritic solidification and numerical analysis of the phase-field approach to model complex morphologies in alloys", Engineering with Computers (EWCO), 2022. [journal] [arXiv]
[33] K. Bhagat, S. Rudraraju, "A numerical investigation of dimensionless numbers characterizing meltpool morphology of the laser powder bed fusion process", Materials, 2022. [journal] [Preprint]
[32] K. Bhagat, Z. Jin, S. Rudraraju,``A novel phase-field based formulation of interface evolution during mechanical compaction of sedimentary basins'', (under review) [Preprint]
[31] P. Pandey, S. Rudraraju,``Phase field formulation of nanocrystalline grain evolution and solute drag effects'', (under review)[Preprint]
[30] M. Ansari, H. Agiwal, D. Franke, M. Zinn, F. E. Pfefferkorn, S. Rudraraju,``Numerical investigation into the influence of alloy type and thermo-mechanics on void formation in Friction Stir Welding of Aluminium alloys'', accepted for publication in Journal of Manufacturing Science and Engineering. [Preprint]
[29] M. Ansari, H. Agiwal, M. Zinn, F. E. Pfefferkorn, S. Rudraraju,``Novel Correlations between process forces and void morphology for effective detection and minimization of defects during Friction Stir Welding'', Journal of Manufacturing Science and Engineering, 144(9): 091007, 2022. [journal]
[28] H. Agiwal, M. Ansari, D. Franke, P. Faue, S. Clarkc, K. Fezza, S. Rudraraju, M. Zinn, F. E. Pfefferkorn, ``Material Flow Visualization during Friction Stir Welding using High-Speed X-Ray Imaging'', Manufacturing Letters, Vol. 34: 62-66, 2022. [journal]
2021
[27] D. Auddya, X. Zhang, R. Gulati, K. Garikipati, P. Rangamani, S. Rudraraju, ``Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff- Love kinematics and revealed by a three-dimensional computational framework'', Proceedings of the Royal Society A, Vol 477, Issue 2255, 2021. [journal]
[26] S. Kim, C. Baril, S. Rudraraju, H-L. Ploeg, ``Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement'', Journal of Biomechanical Engineering, 144(1): 011006, 2021. [journal]
[25] D. Franke, M. Zinn, S. Rudraraju, F. E. Pfefferkorn, ``Influence of Tool Runout on Force Measurement During Internal Void Monitoring for Friction Stir Welding of 6061-T6 Aluminum'', Journal of Manufacturing Processes, 143(11): 111008, 2021. [journal]
2020
[24] D. Franke, S. Rudraraju, M. Zinn, F. E. Pfefferkorn, ``Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys'', Journal of Manufacturing Processes, Vol 54: 251-261, 2020. [journal]
[23] S. DeWitt, S. Rudraraju, D. Montiel, W.B. Andrews, K. Thornton, ''PRISMS-PF: A General Framework for Phase-Field Modeling with a Matrix-Free Finite Element Method'', Nature npj Computational Materials 6, 29, 2020. [journal]
[22] R. Vasan, S. Rudraraju, M. Akamatsu, K. Garikipati, P. Rangamani, ''A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction'', Soft Matter, 2020. [arXiv] [journal]
2019
[21] P. Motamarri, S. Das, S. Rudraraju , K. Ghosh, D. Davydov, V. Gavini, ''DFT-FE -- A massively parallel adaptive finite-element code for large-scale density functional theory calculations'', Computer Physics Communications, 2019. [journal] [arXiv]
[20] S. Rudraraju, D.E. Moulton, R. Chirat, A. Goriely, K. Garikipati, ''A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth'', PLOS Computational Biology, 15(7): e1007213, 2019. [journal][arXiv]
[19] M. Yaghoobi. S. Ganesan, S. Sundar, A. Lakshmanan, S. Rudraraju , J. E. Allison, V. Sundararaghavan, ''PRISMS-Plasticity: An open-source crystal plasticity finite element software'', Computational Materials Science, Vol. 169, 2019. [journal]
2018
[18] J. Jiang, K. Garikipati, S. Rudraraju, ''A diffuse interface framework for modelling the evolution of multi-cell aggregates as a soft packing problem due to growth and division of cells'', Bulletin of Mathematical Biology , 2018. [journal][arXiv]
[17] LK. Aagesen et al., ``PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science'', The Journal of The Minerals, Metals & Materials Society (JOM) , Vol. 70, 2298-2314, 2018. [journal]
2017
[16] G. Teichert, S. Rudraraju, K. Garikipati, ''A variational treatment of material configurations with application to interface motion and microstructural evolution'', Journal of the Mechanics and Physics of Solids, Vol. 99: 338–356, 2017. [journal][arXiv]
[15] S DeWitt et al., ``Misfit-driven β''' precipitate composition and morphology in Mg-Nd alloys'', Acta Materialia, Vol. 136, 378-389, 2017. [journal]
[14] G. Teichert, H. Gunda, S. Rudraraju, A. Natarajan, B. Puchala, K. Garikipati, A. Van der Ven, ''A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations'', Computational Materials Science, Vol. 128: 127–139, 2017. [journal][arXiv]

pre-2017 (Before joining UW-Madison)

[13] S. Rudraraju, A van der Ven, K. Garikipati, ``Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component, crystalline solids'', Nature npj Computational Materials, 2016, doi:10.1038/npjcompumats.2016.12. [journal] [arXiv]
[12] Z. Wang, S. Rudraraju, K. Garikipati, ``A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin's theory of gradient elasticity at finite strains'', Journal of the Mechanics and Physics of Solids (JMPS), Vol. 94: 336-361, 2016, doi:10.1016/j.jmps.2016.03.028.[journal] [arXiv]
[11] K. Sagiyama, S. Rudraraju, K. Garikipati, ``Unconditionally stable, second-order accurate schemes for solid state phase transformations driven by mechano-chemical spinodal decomposition'', Computer Methods in Applied Mechanics and Engineering (CMAME),Vol. 311: 556–575, 2016. [journal] [arXiv]
[10] T. Jiang, S. Rudraraju, A. Roy, A. Van der Ven, K. Garikipati, M. L. Falk, ``Multi-physics simulations of lithiation-induced stress in LiTiO electrode particles'', Journal of Physical Chemistry C, 2016, [journal] [arXiv]
[9] A.M. Freddo, S.K. Shoffner, Y. Shao, K. Taniguchi, A. S. Grosse, M.N. Guysinger, S. Wang, S. Rudraraju, B. Margolis, K. Garikipati, S. Schnell and D.L. Gumucio, ``Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding'', Integrative Biology, 2016, doi:10.1039/C6IB00046. [journal]
[8] S. Rudraraju, A van der Ven, K. Garikipati, ``Three-dimensional iso-geometric solutions to general boundary value problems of Toupin's gradient elasticity theory at finite strains'', Computer Methods in Applied Mechanics and Engineering (CMAME), Vol 278, Pages 705-728, 2014. [journal] [arXiv]
[7] K.L.Mills, R Kemkemer, S. Rudraraju, K. Garikipati, ``Elastic free energy drives the shape of prevascular solid tumors'', PLoS ONE, 9(7), 2014. [journal] [arXiv]
[6] K.L.Mills, S. Rudraraju, R Kemkemer, K. Garikipati, ``The continuum physics of tumor growth'', In: R. Kaunas, A. Zemel, editors. Cell and Matrix Mechanics, CRC Press, 2014 [book]
[5] S. Rudraraju, K.L.Mills, R Kemkemer, K. Garikipati, ``Multiphysics Modeling of Reactions, Mass Transport and Mechanics of Tumor Growth'' Computer Models in Biomechanics, Pages 293-303, 2013. [journal]
[4] S. Rudraraju, K. Garikipati, A.M. Waas, B.A. Bednarcyk, ``On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites'', NASA Technical Publication (peer reviewed) (NASA/TP-2013-217431, E-18123), 2013. [NASA]
[3] S. Rudraraju, A. Salvi, K. Garikipati, A. M. Waas, ``Predictions of crack propagation using a variational multiscale approach and its application to fracture in laminated fiber reinforced composites'', Composite Structures, Vol 94, Issue 11, Pages 3336-3346, 2012. [journal]
[2] S. Rudraraju, A. Salvi, K. Garikipati, A. M. Waas, ``Experimental observations and numerical simulations of curved crack propagation in laminated fiber composites'' Composites Science and Technology (CST), Vol 72, Issue 10, Pages 1064-1074, 2012. [journal]
[1] S. Rudraraju, A. Salvi, K. Garikipati, A. M. Waas, ``In-Plane fracture of laminated fiber reinforced composites with varying fracture resistance: experimental observations and numerical crack propagation simulations'', International Journal of Solids and Structures (IJSS), Vol 47, Issues 7-8, Pages 901-911, 2010. [journal] [arXiv]